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INTRODUCTION 
 
Navy personnel first reporting on board ship must often spend a considerable amount of time 
learning their way around by asking for directions, receiving escorts, or just exploring.  The use 
of computer-aided design in the development and construction of new ships provides a partial 
solution to this problem by making it possible to build interactive 3D virtual environments (VEs) 
that can be navigated and explored in advance of boarding the actual ship.  Such environments, 
however, must be augmented with intelligent query answering and route finding capability to be 
fully useful.  This in turn requires that the purely navigation-oriented VE interface be integrated 
with a symbol-based interface that can provide information such as compartment names and 
numbers.  While such an interface would typically be implemented as a GUI (Graphical User 
Interface) in most computer applications, speech interaction provides a highly natural alternative 
that offers minimal interference with the eyes/hands-busy task of virtual navigation.  We have 
named the resulting hybrid technology Augmented VE (AVE) since it is an exact parallel to so-
called Augmented Reality (AR) technology in which an information system is overlaid on the 
(real) 3D world via a device such as a see-through head-mounted display.  A speech-interactive 
VE system is then an AVE in which speech is a primary available interface medium. 
 
This paper gives a technical description of the Interactive Ship Familiarization System (ISFS), a 
speech-interactive VE system for ship familiarization which is a transition from an earlier system 
called the Multimodal Ship Familiarization Tool (MSFT) [Tate et al. 2000] to an new application 
domain and software environment.  The MSFT domain is a 3D model of a significant portion of 
the Navy’s Ex-USS Shadwell fire research and test ship at Mobile, Alabama.  The new domain is 
a model of the Island House structure (Levels 08 & 09) of the USS Ronald Reagan (CVN76) 
aircraft carrier, and includes not only ship structure but also furnishings, electronic 
instrumentation, utility piping and ductwork, fire extinguishers and other machinery, all modeled 
in accurate detail.  The MSFT software was written using the World Toolkit, a C-language based 
SDK (System Development Kit) from Engineering Animation, Inc., and runs on an Intergraph 
500MHz Pentium III computer.  ISFS is written in VRML (Virtual Reality Modeling Language) 
using Java and ECMAScript as scripting languages, and currently runs on a Dell 2.0GHz Xeon 
machine in a standalone VRML viewer developed using the Cortona VRML Client SDK from 
ParallelGraphics Inc. 
 
VRML is a scriptable, text-based 3D modeling language that runs on a variety of hardware 
platforms and software environments, and has been widely used for industrial and scientific 
applications by numerous academic and US government agencies such as NCSA, NIST, NASA, 
and NSF.  While it may soon be superseded by its successor X3D (a member of the XML 
extensible markup language family) and other support technologies like Java3D, reverse 
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translators from VRML to X3D should enable past and current VRML development work to 
remain viable into the future. 
 
PILOT PROJECT: ITD KIOSK 
 
The development of the ISFS was facilitated by a pilot project, the Information Technology 
Division (ITD) Multimodal Information Kiosk, in which we first explored and developed 
techniques for implementing speech- and GUI-controlled route finding and animated escort 
capabilities in VRML and Java.  The ITD Kiosk currently models two of the division’s main 
office buildings at NRL and provides both an office directory graphical interface and speech 
command interface for requesting virtual escorts to the offices of ITD personnel.  The model 
includes interactive animated elevators, stairways, realistic lighting effects, texture maps, sound 
effects, and use of photographic imagery to enhance realism of exterior views and distinctive 
furnishings. 
 
ISLAND HOUSE 3D MODEL 
 
The 3D model of the CVN76 Island House Levels 08 & 09 was provided to NRL by the Newport 
News, VA facility of Northrop Grumman.  The model was originally developed in the FTL file 
format on a proprietary 3D modeling software called Vivid, and was converted to VRML for 
delivery to NRL.  Initially the model was delivered as a single 2GB VRML file which (on our 
512MB machine) was too large either to run in a VRML viewer or to edit in our model 
development software, Autodesk’s 3D Studio VIZ 3i.  Subsequently the model was redelivered 
broken down into nine smaller files each containing a different layer of the original, as follows: 
 
Waveguide  765MB 
Electrical Equipment 723MB 
Piping   334MB  
Structure  322MB 
Wireways  222MB 
Hull Outfit  169MB 
Machinery  129MB 
Ventilation    69MB 
HVAC Insulation     8MB 
 
These VRML files were now of an appropriate size to import into 3D Studio, edit in its native 
format, and re-export as new VRML files acceptable both to the VRML viewer and to several 
postproduction development tools for data and geometry complexity (polygon) reduction.  
 
From the standpoint of creating a recognizable and navigable space containing a fairly realistic 
clutter level of furnishings and equipment, the essential files for our purposes were Structure 
(floors, walls, ceilings, doors and hatchways), followed by Hull Outfit (chairs and other furniture, 
stairs, railings, ladders, hatchway doors, electrical equipment mounts, binoculars) and finally 
Electrical Equipment (computer monitors and keyboards, other device consoles, lights, 
electronics cabinets).  While initially the Structure file was one of the largest (despite modeling 
features like floors and walls that should only require relatively few simple polygons), we 
discovered experimentally that by converting the original VRML file to AutoCAD DXF format 
and then re-exporting the file as VRML we were able to reduce its size by a factor of 40, from 
322MB to only 8MB, with no loss of detail and only a few minor disruptions in geometry.  
(VRML files generated by 3D modeling programs have a reputation for being bloated in size, and 
apparently this was one such case.)  Data reduction (redundancy elimination) on the remaining 



files typically decreased their size by a factor of 5-6 or so.  Since the Electrical Equipment file 
was by far the largest we were using, it was additionally submitted to 50% polygon reduction 
without showing any significant deterioration in visual appearance. 
 
After postproduction we were able to load the Structure and Hull Outfit files for both levels and 
the Electrical Equipment for one level (09) without exceeding the 320MB or so of RAM available 
to the VRML viewer, thus keeping the computer’s total memory usage within its 512MB RAM 
limits and avoiding the virtual memory paging that otherwise would interrupt the walkthrough 
animations with long pauses and leaps ahead in time.  Since that particular computer can be 
upgraded to as much as 2GB RAM, more if not all the Island House geometry could potentially 
be loaded, although it is uncertain whether the resulting animation frame rate would remain at the 
current minimally acceptable level of about five frames per second.  One VRML optimization we 
experimented with was to set the visibilityLimit so that geometry further away than, say, fifteen 
meters is not displayed at all.  So long as no line of sight is longer than that the technique can be 
effective, but with the speedups provided by file cleaning and polygon reduction we felt we no 
longer needed that slight increase in efficiency.  Another optimization (used in the ITD Kiosk) 
was to monitor the user’s position with a ProximitySensor and switch relevant geometry in and 
out using a VRML Switch node.  That is practicable in situations when the switched geometry 
lies completely outside the user’s field of view (e.g. when the user is in a closed elevator), but is 
difficult to implement cleanly when there is visual overlap between the switched geometries, as 
when approaching doorways, climbing stairs, etc.  In any event, our experiments with geometry 
switching in the current project had no effect on frame rate, so the geometry may already be 
grouped in a browser-efficient manner to begin with. 

 
Fig. 1: View forward from 09 Level port weather deck, virtual Reagan 

 
While detailed in geometric appearance, the modeled objects are not realistically colored but 
rather are color-coded by layer (Structure: gray, Hull Outfit: cyan, Electrical Equipment: 
magenta, etc.) making for a somewhat surreal virtual environment (Figure 2).  While it would be 
a simple matter to change the color for an entire layer in the model editor, the absence of object 
types makes it impossible to, say, select all fire extinguishers to assign a particular color, so 
colorization would instead have to be done laboriously on an object-by-object basis.  Similarly, 



attempting to optimize the model by using the editor to delete individual bits of geometry 
considered non-essential to the VR display would be prohibitively time-consuming and would 
only end up “nickel-and-diming”  the overall polygon count by a few tenths of a percent at most. 
The original model is lit by three DirectionalLights, which illuminate all geometry of the same 
orientation equally throughout the world.  While inexpensive for the VR browser to render, such 
lights produce an artificial “glare”  that is not well suited for realistic interior scenes but is entirely 
consistent with the otherworldly color scheme that currently exists.  (The ITD Kiosk achieved 
much of its realism through the use of dozens of individual PointLights that create pools of light 
that attenuate with distance, but it could afford their increased rendering costs because of its 
considerably smaller polygon count.)  We also added a Background node providing sky, sea and 
horizon since otherwise the Island House would appear to be floating in the blackness of space, 
and that addition did much to improve the believability of the scene and ameliorate any perceived 
harshness in the lighting and colors. 

 
Fig. 2: Fly Control, virtual Reagan 

 
While the most familiar VRML viewers are Web browser plug-ins, that runtime environment 
imposes security limitations on what system operations the embedded Java is permitted to 
execute.  In our case, Java was unable to establish a connection with the speech recognition 
engine because browser security was enforcing restrictions on the opening of arbitrary system 
resources.  This is understandable since one would certainly not like to be browsing a remote 
VRML file on the Web that has the ability to open a microphone connected to your machine and 
start listening in on your office conversations.  While it is possible for Java to interactively 
request security override permissions from the user, different vendors and releases of Java handle 
this in substantially different ways, including the older version of Java (Microsoft JVM 1.1) that 
the Cortona VRML viewer uses.  One workaround (used in the ITD Kiosk) was to have the 
VRML program open a TCP/IP socket connection to an external speech I/O agent, an operation 
that also requires a security override but one which we knew how to implement in an old release 
(4.0) of one particular Web browser (Netscape).  However we finally decided that the simplest 
solution would be to run the VRML program in a stand-alone viewer built using the Cortona 
SDK, thus bypassing browser security issues completely.  This approach had the further 
advantage of allowing us to customize the interface to the VRML viewer itself if we so desire. 



 
The original VRML files from Grumman also made use of VRML’s Level Of Detail (LOD) 
feature in which simpler geometry is used for distant objects and a more detailed geometry is 
switched in as the object reaches a certain range from the viewer.  However the range figure 
provided in the original VRML files was too small by a factor of ten for the Cortona viewer, only 
swapping in the detailed geometry when less than a meter away.  Scaling up the LOD range 
solved this problem, but ceased to be an issue when we began importing the VRML files into 3D 
Studio for editing since that program only retained the close-range geometries and apparently 
discarded the others.  This actually turned out to be beneficial, because the original Structure file 
with LOD commanded a 50-70% CPU load even while displaying a static scene, whereas with 
3D Studio’s LOD-free file the CPU load dropped to 0%.  Importation into 3D Studio also 
disabled the surface smoothing present in the original files, which we were unable to restore by 
experimenting with alternative crease angle values or use of surface normals.  We also found it 
critical that VRML be exported from 3D Studio with six digit precision to retain the quality of the 
original geometry. 
 
PROCEDURAL COMPONENT 
 
The Java components of the system fall into four categories: Graphical User Interface (GUI), 
speech I/O, route finding, and scene interaction routines. 
  
The GUI is built using the older Java AWT (Abstract Windowing Toolkit) rather than the newer 
Swing Set toolkit since Microsoft JVM 1.1 is a pre-Swing Java release.  The GUI is illustrated in 
Figure 3 and provides for instant transport to any compartment in the model, escort between any 
two compartments, the ability to show or hide a trail of arrows delineating the path from an origin 
to a destination, and identification of the current compartment (including level, compartment 
number and name) and direction of view (forward, aft, port or starboard).  A button is also 
provided to enable and disable speech recognition so the operator can carry on side conversations. 
 

 
Fig. 3: Interactive Ship Familiarization System graphical user interface 

 
The speech interface is written using the Java Speech API (JSAPI), a high-level programmer 
interface to JSAPI-compliant speech systems such as (in the current implementation) IBM 
ViaVoice.  A speech command grammar written in Java Speech Grammar Format (JSGF) 
associates tags with subcomponents of the recognized utterance, reducing it to a simplified form 
that is more easily handled by the speech command interpreter.  Spoken commands and queries 
generally correspond one-to-one to the controls in the GUI and update them when executed, e.g. 
the query Where am I? not only elicits a synthetic speech response identifying the current space 
(“This is the Pilot House”) but also updates the value of the “Here”  (current space) field in the 
graphical interface.  The only difference from the GUI is that the speech interface provides 
separate queries for current level (Which level am I on?) and compartment number (What’s the 
number of this compartment?), whereas in the GUI the number (which begins with the level) is 
always displayed alongside the name so as to identify it unambiguously, e.g.  “08-162-1-L 



Officer WC" and “09-163-1-L Officer WC".  The speech synthesizer pronounces compartment 
numbers in Navy fashion (e.g. “oh eight tack one sixty two tack one tack L” ) and the speech 
recognizer is prepared to recognize numbers read in the same way.  Finally, the command Stop 
listening puts the speech recognizer into a “sleep”  mode in which it ignores all further 
microphone input other than the command Resume listening, which restores it to full command 
recognition mode. 
 
The route finder is a direct port to Java of the C language version used in the Shadwell project.  It 
loads a waypoint connectivity file that defines the adjacencies of key coordinate locations 
(waypoints) in the model, such as doorways, corners (turn points) and the centers of 
compartments.  When a route is requested, a separate resource file is first consulted to map origin 
and destination compartment numbers to their key waypoints, and then a best-first search finds 
the most cost-efficient route between the two points.  A route can have a high cost either because 
of its overall length, or because it includes one or more waypoints that have been defined as being 
less preferable to use, e.g. a hatchway that requires stooping and crawling through, or doorways 
that take one from inside the ship to outside and vice versa.  Once a route has been computed, the 
system either draws a chain of arrows along the path for the user to navigate (GUI command 
Show Path or verbal command How do I get to…), or escorts the user along the path at a walking 
pace (GUI command Escort or verbal command Take me to…). 
 
The scene interaction routines consist of escort (walkthrough) animation, route display, 
teleportation, viewpoint queries, and database queries, described next. 
 
Escort Animation 
 
The escort animation code takes the path (sequence of waypoint coordinates) generated by the 
route finder and converts it to a VRML PositionInterpolator node.  As a clock signal is routed to 
the node, a continuous stream of interpolated coordinates is generated and routed to the position 
field of a dedicated Viewpoint node to which the user’s viewpoint has been temporarily bound, 
thus producing the animation.  The clock is set and the interpolation generated in such a way that 
each clock tick results in an equal coordinate displacement, producing a steady transition at a 
walking pace. The route path is also used to generate an OrientationInterpolator node that is 
routed to the viewpoint’s orientation field to control the viewpoint’s horizontal (left-right) 
viewing angle.  Since the orientation at each waypoint of the path is in the direction of the next 
waypoint, the OrientationInterpolator produces a continuous stream of interpolated rotations as if 
the user’s head is gradually turning in the direction s/he is about to move, rather than always 
looking straight ahead even at turns [as was the case in the Shadwell MSFT?].  The view remains 
level unless the user is ascending or descending, in which case the orientation is multiplied by a 
±22.5° vertical vector causing the viewpoint to momentarily peer up or down and then level out 
again as the ascent/descent is completed.  (Since this SFRotation.multiply() method is not 
provided in VRML Java Platform Scripting but only in the ECMAScript interface, it is performed 
by a separate Javascript routine.)  While many people might just look straight ahead when using 
stairs or a ladder, the vertical orientation dipping is intended to give the user a preview of the 
space about to be entered so as to enhance their spatial awareness of the transition. 
 
If the path’s origin waypoint corresponds to the same space the user is currently in (e.g. Take me 
from here to…), the user’s orientation is first rotated toward that waypoint.  If the user is located 
more than a half meter from the waypoint s/he is then walked to its coordinates, at which point 
the path traversal itself begins.  One problem with this approach is that even if the user’s current 
location is closer to a subsequent node on the path than to its origin, the user is still escorted to 
the origin and then has to “double back”  past their original position.  The straight-line walk to the 



path origin is also incapable of navigating around obstacles like furniture or equipment, and in an 
irregularly shaped space might even go through an intervening wall.  The solution to these 
problems would require predefining many more waypoints per space and modifying the route 
finder to associate multiple waypoints with each one, finding a path that originates from the 
closest such waypoint to the user. 
 
If the user requests to be escorted from some other space to a destination, s/he is first teleported to 
the origin waypoint in that space (facing in the same direction as originally) and after a one 
second pause – intended to provide time to adjust to the “shock”  of teleportation – is rotated in 
the direction of the path and the escort is begun. It might be argued that the user’s orientation 
after the teleportation (or at the end of an escort, for that matter) should instead be in some pre-
determined direction that provides a “good”  view of the space, since under the current approach 
the user might arrive simply facing a blank wall.  In the Shadwell system each waypoint was 
associated with a predefined orientation (an approach we also took in the ITD Kiosk project, 
since there the origin and destination points were typically hallway office doors with nameplates), 
and that approach could also be adopted here.  The advantage to the current approach, however, is 
that if the user is aware of which direction they are facing before the teleportation, they can take 
advantage of that information afterwards without having to make an additional orientation query 
(Which way am I facing now?). 
 
When an escort has been completed the system signals the arrival with synthesized speech (“You 
have arrived at the destination”).  The Shadwell system also provided an additional visual cue (a 
large floating red ball) indicating the end of the path, but the current implementation relies just on 
the speech cue and cessation of motion (and/or end of arrow trail, see next section) to signal 
arrival at the destination.  Finally, at any time during an escort the user can halt the walkthrough 
(e.g. Stop the escort) to pursue independent navigation or to request a subsequent escort or route 
display. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Arrows show path computed by route finder 
 
 



Route Display 
 
The user can also request to be shown a path from one compartment to another, and then navigate 
the path manually using the computer’s mouse and/or arrow keys.  The path is shown as a 
sequence of bright yellow 3D arrows floating at about chest level and spaced 1.5 meters apart, 
each arrow pointing directly toward the one in front of it (Figure 4).  (Since from the browser’s 
viewpoint the arrows are virtual physical objects just like any other, they are grouped in a 
Collision node with collision disabled so they will not block the user from navigating the path if 
collision detection has been turned on.)  As with virtual escort, if the origin waypoint of the path 
does not correspond to the space where the user is currently located, the user is first teleported to 
that waypoint.  Instead of rotating the user’s viewpoint toward the first arrow of the path, 
however, synthesized speech instead announces “Follow the arrows <direction>”  where 
<direction>  is “ to your left/right” , “ in front of you”  or “behind you” .  This gives control over any 
initial reorientation to the user, who in requesting a marked route most likely intends to navigate 
it manually rather than be given an automatic escort.  It should also be noted that in a large 
irregularly shaped space like the Pilot House the initial arrow of the path might still not be visible 
even after a viewpoint rotation, in which case the user would have to do some navigation just to 
locate the start of the path.  We experimented with adding arrows from the user’s current position 
to the path origin, but this created unnecessarily confusing paths in the case of the “doubling 
back”  routes described earlier. 
 
If the user subsequently issues an escort command, s/he will be led along exactly the same 
sequence of positions as the arrow path, although during turns the arrows may momentarily go 
out of sight because the viewpoint orientation is being gradually interpolated away from the 
current straight-line path segment toward the direction of the next path segment.  The user can 
also request at any time that the arrows be hidden or redisplayed.  In the current implementation 
the arrow path remains visible even after the user has navigated or been escorted to the 
destination, in case they wish to retrace their steps. 
 
Teleportation 
 
Rather than be escorted at a walking pace to a new location, the user can request to be transported 
there instantly using commands such as Teleport (beam, transport) me to Fly Control.  This is 
identical to the instant transport that occurs at the beginning of an escort or path display 
originating at a location other than the user’s current location. 
 
Viewpoint Queries 
 
The user can at any time (including during an escort) query the name of the compartment they are 
currently in, the ship level they are on, or the direction (forward, aft, port, starboard) they are 
currently facing.  Queries can be posed either as WH-questions (What compartment is this? 
Which way am I facing? Which direction is starboard?) or yes/no questions (Is this the Pilot 
House?  Am I facing aft?  Is starboard to my right?)  The system determines the current 
compartment from the viewpoint coordinates by consulting a separately defined compartment 
perimeter database, just as in the Shadwell project.  The ship level is determined from the 
viewpoint’s vertical coordinate, and viewing direction from the viewpoint’s orientation field.  It 
should be noted that the current compartment and direction fields of the GUI do not automatically 
update as the user navigates or is escorted around, but only when explicitly queried, keeping the 
semantics of the GUI aligned with the semantics of the speech interface which similarly only 
provides such information when asked. 
 



Database Queries 
 
The user can query the compartment name, number and ship level for any particular space either 
by naming it (What’s the number of the Pilot House?), giving its number (What’s the name of 
compartment oh eight tack one sixty eight tack three tack L?), using an anaphoric reference (How 
do I get to the Pilot House?  What is that compartment’s number?  What level is it on?), or a 
reference to the current space (What’s the number of this compartment?).  Most such queries can 
also be couched as yes/no questions, e.g. Is the Pilot House on level 08?  If the name reference is 
ambiguous, the system chooses the one on the user’s current level and responds accordingly: 
 
What’s the number of the Passage?  The one on this level is number 08-168-1-L. 
What level is the port weather deck on?  There is one on this level, 09. 
Is the forward weather deck on Level 08? There is one on that level. 
 
SPEECH COMMAND TAGGING 
 
The following examples show the consistent manner in which path-based requests are tagged in 
the speech recognition grammar.  When unspecified the origin is assumed to be the current 
compartment and is tagged here, the same as the explicit here, this compartment, etc.  The origin 
and destination are additionally tagged by the keywords from and to since syntactically they can 
occur in either order.  The command interpreter dereferences the token there (there, that 
compartment, it, etc.) as the most recently mentioned space from a prior sentence. 
 
How do I get from Fly Control to the Pilot House? show from 09-160-1-C to 08-159-1-C 
Show me how to get from here to the Pilot House. show from here to 08-159-1-C 
Where is the Pilot House?    show from here to 08-159-1-C 
Show me where the Pilot House is from Fly Control. show to 08-159-1-C from 09-160-1-C 
Show me how to get there.    show from here to there 
 
Take me from Fly Control to the Pilot House.  escort from 09-160-1-C to 08-159-1-C 
Show me from here to the Pilot House.   escort from here to 08-159-1-C 
Escort me to the Pilot House.     escort from here to 08-159-1-C 
Walk me to the Pilot House from Fly Control.  escort to 08-159-1-C from 09-160-1-C 
Take me there.      escort from here to there 
 
Note that Where is <name>? is interpreted in this implementation as a request to be shown a path 
to the named space, unlike the earlier Shadwell interface in which it was interpreted as a request 
for its compartment number.  An ambiguous name reference produces a tag structure containing 
an embedded list of alternative compartment number strings: 
 
How to I get to the Officer WC?   show from here to { 08-162-1-L 09-163-1-L}  
Escort me from the Bath to this compartment. escort from { 08-168-3-L 09-167-1-L}  to here 
 
If the ambiguous reference is the destination, the command interpreter chooses the one on the 
same level as the origin as being the most likely intended goal; if the origin, it chooses the one on 
the level the user is currently on.  In either case it announces “There is more than one <name>, 
going to the one on the [current, same] level.”   Since these heuristics are not guaranteed to yield 
what the user intended, a better approach might be to engage the user in a dialogue to resolve any 
ambiguities.  To avoid any confusion to begin with the user can also preface the name with its 
level, e.g. How do I get to the 09 Level Officer WC? 
 



Since the route finder only associates one key waypoint with each compartment, referencing the 
exterior weather decks becomes problematic because they wrap around the entire Island House 
and we would like a command like How do I get to the weather deck? to find a path to the nearest 
segment of the deck.  For that reason we retain the approach taken in MSFT by treating the port, 
forward and starboard weather decks on each level as different “compartments”  and requiring that 
the user reference them specifically (Take me to the forward weather deck) subject to the same 
level disambiguation routine just described. 
 
FUTURE WORK 
 
While VRML is an object-oriented representation in which shapes can be hierarchically grouped 
into named nodes representing individual objects, those internal names may not be adequate to 
identify entities for reference by a spoken language interface.  For example, one of the deck 
chairs in Fly Control is represented by a VRML Transform node named _76_5033_1331, but 
without a concordance between an equipment list and such identifiers it would be impossible to 
implement referential capability such as that chair, the nearest fire extinguisher, etc. in the 
interface. 
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